

Table of Contents
1 Introduction 5

Acknowledgement 5

1.2 Problem Statement 6

1.2.1 Problem 6

1.3 Operational Environment 6

1.4 Intended Users and Uses 6

1.5 Assumptions and Limitations 7

1.5.1 Assumptions 7

1.5.2 Limitations 7

1.6 Expected End Product and Deliverables 7

1.6.1 Quad Hardware and Software 7

1.6.1.1 Vivado Upgrade Testing 7

1.6.1.2 Second Quad 7

1.6.1.3 Quad Hardware Upgrade 8

1.6.1.4 Quad Software Upgrade 8

1.6.1.4 Power Regulator PCB Board 8

1.6.1.4 Sensor Data Sent in Real Time 9

1.6.2 Ground Station 9

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by
May 1, 2019 9

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by
May 1, 2019 9

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by
May 1, 2019 9

1.6.3 Controls Systems 9

1.6.3.1 Model Linearization and LQR Controllers 9

1.6.3.2 System Parameterization Instructions 10

1.6.4 Continuous Integration 10

1.6.4.1 Quad Simulator 10

SDMAY19-20 1

1.6.4.2 Upgrade Testing Framework 10

1.6.4.2 Automated Testing for Controls Output 10

1.6.5 Documentation 10

1.6.6 Demos 11

2. Specifications and Analysis 11

Proposed Design 11

2.1.1 Quad Hardware and Software 11

2.1.2 Controls 11

2.1.3 Ground Station 12

2.1.4 Continuous Integration 12

2.1.5 Quad Software and Tests 12

Design Analysis 13

2.2.1 Quad Software 13

2.2.2 Controls 13

2.2.3 Ground Station 13

2.2.4 Continuous Integration 13

Testing and Implementation 14

Interface Specifications 14

Hardware and software 14

Functional Testing 14

Hardware 14

Non-Functional Testing 15

Process 15

Quad Hardware and Software 15

Controls 15

Ground Station 16

Results 16

Quad Hardware 16

Controls 16

SDMAY19-20 2

Ground Station 16

4 Closing Material 17

4.1 Conclusion 17

4.3 Appendices 17

List of figures/tables/symbols (​This should be the similar to the project plan)

Figure 1-1: MicroCART quadcopter 5

Figure 3-1: Iterative Testing Process 15

SDMAY19-20 3

Definitions

Term Definition

CLI Command line interface

Continuous
Integration

automated process of running tests on every commit to the repository

Demo Short for demonstration; this is one of the deliverables of the project: a
demonstration of the quad’s capabilities, for example, doing a backflip
with the quad, finding an object and following it, communicating with a
second quad to perform flight patterns

GPS Global Positioning System; space-based radionavigation system using
satellites to determine position; proposed to find position (x, y) when
not in the lab using the VRPN system

Ground station The application that runs on a host computer that communicates with
the quad via a Wi-Fi connection and sends it coordinates to the quad

GUI Graphical user interface

IR Infrared wavelengths of light longer than visible light; used in the VRPN
system to determine the position of the quad

LIDAR Light Detection and Ranging; this is a system for determining the
altitude (z) of the quad using the onboard sensor

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by
the relative motion between the and the scene to determine position;
used by the quad to calculate position (x, y) when not in the lab using
the VRPN system

PID Proportional-integral-derivative control system; standard control
algorithm used on the quad

Quad Short for quadcopter; this is the hardware platform we use in this
project

Setpoint in a control system, the target value for an essential variable

VRPN Virtual-Reality Peripheral Network; this is the system used to determine
the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using
a set of 12 stationary cameras and an IR transmitter on the quad

SDMAY19-20 4

1 Introduction
Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the
development of a quadcopter (see Figure 1 below) and tracking system. This project has been in
development since 1998 and the current system has been passed down since 2006. The project aims
to create a stable and easy to use platform for researching control theory. The quadcopter flies
primarily in the Distributed Sensing and Decision Making Laboratory within a twelve camera
infrared tracking system.

Figure 1-1: MicroCART quadcopter

1.1 ACKNOWLEDGEMENT

MicroCART is a project that is assisted by graduate students working in controls under Dr. Phillip
Jones. As this is an ongoing project, previous team members will also be providing help in
understanding the current system. As such, we would like to acknowledge the assistance that has
been and will be provided by:

● Matthew Cauwels
● Robert Buckley
● Matt Rich
● Dr. Phillip Jones
● Dane Larson
● Matthew Kelly
● Austin Rohlfing
● Eric Middelton

SDMAY19-20 5

1.2 PROBLEM STATEMENT

We will improve upon an existing platform that is used for research in controls and embedded
systems and for departmental demos. The platform will be improved by adding increased, reusable
testing of all systems, adding documentation to increase the speed for new users to get started, and
by adding new system features.

1.2.1 Problem

The MicroCART platform designed in previous years had many flaws that hindered its use for
research and demo purposes. The previous platform failed to familiarize the user(s) of the system in
a time horizon that would make it viable for research. This is because the system did not have
ample documentation available for the users of the system to learn about the platform and its uses.
From the viewpoint of a user running demos the area within the VRPN system the platform as it
stood is most stable when confined to flying within the VRPN system as the optical flow navigation
can not hold position during flight. This means that the areas available to the quadcopter for
demos can only utilize the small amount of space in the lab for a demo. Lastly, the quadcopter is
controlled using a PID controller that requires logical guessing and checking to tune, we now have
a new linear controller that can be computed faster and be tuned around multiple points on the
non linear model.

1.3 OPERATIONAL ENVIRONMENT

In order to fly using the VRPN software for position and orientation data, the quad must be inside
of a small area (less than 10 m​2​) inside of Coover 3050. This lab is designed to cause very few
environmental impacts on the quadcopter. Through the use of ventilation, window shades, and
Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with
little to no accumulated dust to affect air quality.

Additionally, the project relies on two Linux computers. One is used to control the ground station
software and the other contains build tools for the FPGA on the quadcopter itself. This provides a
platform for development that is consistent across team members and easier to demo as there are
not issues with building or ensuring correctness of the various communication aspects used for the
project.

1.4 INTENDED USERS AND USES

The primary set of end users is composed of future MicroCART members and controls graduate
students at Iowa State. We also have demonstrations for prospective students, someone from the
two categories (the user) will be running the demo for them (the audience). This means that the
users can be assumed to have competence in using multiple forms of programs (for example, either
GUI or CLI) and in reading general technical documentation.

The other goal listed above regards the modular implementation of new control algorithms as a
research opportunity for graduate students. These users have three primary needs from our
product. The first is a robust and reliable system to decrease variation in test results. This includes
having sturdy quad hardware, low communication latency, and a bug-free user interface. The
second need is to have modular software with complete documentation to allow for them to alter
the implementation themselves, without the need for significant system rework or intervention of

SDMAY19-20 6

the MicroCART design team. Finally, these students will need the data from the system
characterization in order to form their models. This includes information about mass, moments of
inertia, motor resistances, rotor areas, and many other properties that determine the true behavior
of the quadcopter. There is also a need to make sure that any new features are documented clearly
so that the next group of students that add features will be able to ramp up quickly.

1.5 ASSUMPTIONS AND LIMITATIONS

1.5.1 Assumptions

● Our VRPN camera system as it exists provides sufficiently accurate position data
● Our VRPN camera system as it exists provides sufficiently frequent updates
● The quadcopter will be used within the camera system

1.5.2 Limitations

● The quadcopter must use a wireless link to the ground station
● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS)
● Latency and range of the wireless link between the quadcopter and the ground station
● The quadcopter must be physically tethered to the lab floor

1.6 EXPECTED END PRODUCT AND DELIVERABLES
The quadcopter system consists of three major subsections: the quadcopter hardware/software, the
ground station, and the control systems. Each of the subsections is essential to meet the desired
objectives and fulfill requirements. Documentation and demos are also a major deliverable for our
project and will be discussed.

1.6.1 Quad Hardware and Software

1.6.1.1 Vivado Upgrade Testing
The entire quad software platform relies on the Xilinx toolchain. The software we were using to
develop the Quad software is the Xilinx toolchain. Specifically XPS, which is known to be a very
non-user friendly and dated piece of software. One of the major goals of this project was to
transition to the new and improved Vivado to program the FPGA hardware. In addition, we added
unit tests for the hardware modules in simulation as part of our continuous integration pipeline.

1.6.1.2 Second Quad
Our client advisor requested that we develop a second quad for available flight. The difficulties in
building a second quad revolve around the lack of documentation of parts used on the quad, along
with the availability of the previous generation of parts. The new quad needed to be able to run the
same software on a different set of hardware.

SDMAY19-20 7

Figure 1-1: Parts Order for 2nd Quad

1.6.1.3 Quad Hardware Upgrade

The client has requested we upgrade the quads to the latest Zybo board that includes a
connection for a pi camera. The current quads have many long wires and loose
connections that are potential points of failure. Our team will create a custom pcb board
to replace those connections, as well as install the newer zybo boards.

1.6.1.4 Quad Software Upgrade

Currently the quad can only fly reliably within the VRPN Camera system. By integrating
the GPS and improving controls, a quad that will reliably fly outside will be aimed for. The
improved communication and multi-client capability developed last year opens up the
possibility of networking and quad coordination. To take advantage of the newer zybo
boards and cameras the client requested, a version of Linux with OpenCV, to be run on
the second processor on the board, will be explored. Software surrounding these new
functionalities will be developed.

1.6.1.4 Power Regulator PCB Board

The PCB will monitor battery usage and make sure that the user is alerted when battery
power is low, and that the quad lands whenever battery power is too low. It will also make

SDMAY19-20 8

sure the battery usage is efficient as possible, and no more power than necessary is drawn
when the quad is idle.

1.6.1.4 Sensor Data Sent in Real Time

Because the quad now uses Wifi instead of Bluetooth, it is possible to explore sending
sensor data in real time rather than logging sensor data and sending it after the quad
lands. The user should explain what type of data they want even during mid-flight, and
the quad should be able to send that data back to the ground station immediately.

1.6.2 Ground Station

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by May 1, 2019

The communication standard currently setup between the Ground Station and the quad supports
the transmission of flight data and performance information after a flight has completed. Due to
the amount of information being transferred, this process usually takes a considerable amount of
time to complete. We would like to improve the communication occurring between the quad and
the Ground Station to support the transmission of flight data in real time. This will improve the
quad’s status as a research platform by allowing for easy and timely analysis of flight and controls
data.

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by May 1, 2019

Currently, the GUI does not support displaying flight data to the user in real time as it arrives from
the quad. The GUI will be updated to include a display for flight data that the user can see, as well
as interact with to choose the types of data they wish to be seeing and recording. This will allow
users to have a high level of control over the type and amount of data they are seeing during flight
time.

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by May 1, 2019

Currently the ground station supports having multiple quads connected at the same time. In order
to maintain a safe environment, both for observers and for the quads, the ground station will be
improved to include position and orientation analysis for all connected quads in order to ensure
collisions between objects connected to the ground station do not occur. This allows for a higher
level of safety when conducting controls experiments involving multiple quads, as well as improve
the expected lifetime of components and quads.

1.6.3 Controls Systems

1.6.3.1 Model Linearization and LQR Controllers
The primary deliverables of this year’s team were a modular linearization of the system model and a
pair of LQR controllers. The linearization is a script that uses symbolic MATLAB derivation of the
nonlinear model provided by Matt Rich in [1]. This allows a future user to change the nonlinear
model and immediately recompute the system linearization. Similarly, the linearization is also
dynamic on the measured system parameters, so no further work needs to be done to account for

SDMAY19-20 9

potential future changes of physical properties (e.g. using bigger rotors or a frame with a greater
mass).

1.6.3.2 System Parameterization Instructions
Because there are now two quadrotors, it is more important than ever to be able to measure and
track the physical properties of of each quadcopter. As such, the controls team aggregated
parameter measurement procedures from both Rich’s [1] and McInerney’s [4] research, as well as
from un-versioned documentation from the previous year’s team. These were formed into a series
of four parameter identification instruction documents, written in Markdown and stored on git,
that contained straightforward instruction, consistent variable usage, and (where necessary)
example MATLAB scripts. Additionally, a Markdown document was created to track all relevant
parameter values and instruction sets.

1.6.4 Continuous Integration

1.6.4.1 Quad Simulator

The quad simulator models a virtual flight dynamics environment for various flight tests. The
current established model in the simulator does not model rotor dynamics; however, it still offers a
reliable platform for performing sanity checks of the changes in controls and quad software. The
current simulator uses a slightly modified version of the actual quadcopter controls. The simulator
also offers input and output through sockets which enables control to be running outside of the
simulator. Our team will focus on improving the simulator model and integrating the simulator
with the automated environment of GitLab.

1.6.4.2 Upgrade Testing Framework
Continuous Integration is the system that tests changes to code using the virtual quadcopter
software. To make the tests more standardized and provide more flexibility in writing the tests, the
tests were ported from a custom barebones testing framework to a standard testing framework,
Unity [5]. This provides a fully developed set of testing functions that can be used by future teams.
We plan to also increase test coverage, and write tests for new features.

1.6.4.2 Automated Testing for Controls Output
We plan on creating a test that would gather information about the controls output in real time,
then get the actuator data from the simulator and make sure that the two points match.

1.6.5 Documentation
The year before, many areas of the code, especially those relating to ground station and quad
software, were lacking documentation. The ground station contains four main components that are
separated well but adding functionality was not explained nor is it mentioned that this is custom
communication between the ground station and quad. The quad software is designed in a way that
makes it so external directories must be used in build tools and there is also no explanation of the
hardware running on the quad. Last year’s team made it their goal to have documentation for all
existing demos, documentation consistent in all code, and documentation for the research done
during their time on the team. To follow up on that goal, our team will continue adding
documentation. This year, the areas of controls model and simulation, ground station, the CI
Testing Framework, along with pure hardware plans need improvement and organization.

SDMAY19-20 10

1.6.6 Demos
As one purpose of this project is to showcase the talents within this department, new demos
needed to be developed to showcase yearly changes. These demos are performed to controls classes
as well as to undergraduate students. We plan to implement the following major demos:

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance
away from it.

2. Have multiple quads perform synchronous movements
3. Have multiple types of quads running at the same time flying together.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

2.1.1 Quad Hardware and Software

In order to effectively upgrade our Xilinx Toolchain software to the latest version of Vivado we
determined it was best to create a new project in Vivado, re-develop the same hardware, and export
that to the old hardware workspace using the old software and project to reduce the amount of
variance that we introduce into the system. Once this is verified, we can move the software over to
the new set of tools as well.

Upgrading to the newer Zybo boards may need some hardware port changes. To increase reliability,
more robust physical ports will need to be soldered on and the wiring replaced with a custom
designed PCB board. The current hardware power specifications and wiring need to be mapped
out/ documented before designing can begin.

One way to create this PCB is to create a Coulomb counter, or to use predictive methods to
determine the approximate battery level, or a mix of the two. In other words, predict when the
battery is likely to be low, then use a coulomb counter after that.

2.1.2 Controls

The controls for the quad is currently implemented using nested proportional-integral-derivative
(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x, y,
z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very
configurable approach to quadcopter controls, as modifications to the quad can be accounted for
by simply adjusting the various PID constants.

The problem with PID controllers is that they contain almost no information about the system
physics, and once tuned to reasonable values control cannot be reliably improved except through
modifying the coefficients by hand to meet qualitative judgements. The primary change we wanted
was to create a controller based on a physical model of quadrotor actuation, which can serve as
non-trivial starting point for future controls research on this platform. Specifically, the plan was to
implement an LQR controller capable of flying the quad to prove the correctness of our model and
its computed linearization.

SDMAY19-20 11

2.1.3 Ground Station

The overall architecture of the various components for the ground station will stay consistent but
the network architecture, as well as backend functionality, will be improved. The ground station is
currently well designed allowing for a backend server, a frontend for clients to use for
communication with the backend, and various clients such as the GUI or CLI (more details on each
interface can be found later in the report). The benefits of the system as it stands is that the
communication and server are kept with the backend so that clients do not need added complexity
to deal with the different objects that are connected. The frontend provides a simple interface that
clients can pass data to and get a response as needed. This again hides the backend implementation
from the clients and this interface is simplified and provides all functionality that the quad and
backend have to offer.

The current communication standard for the MicroCART system allows for formatted packets to be
sent between the ground station and the quad both during flight time for regular flight instructions
as well as after flights for transmitting flight data logs. The ground station (and therefore, the quad)
will be updated so that it will request and receive flight data during operation over the UART
connection currently used to send instruction data. This information will then be formatted and
displayed to the user on an updated GUI. The user will also be able to choose the type(s) of
information they want the ground station to display. This change allows for a higher ease of use of
the quad as a research platform as the types of data displayed will be determined by the user.

The next major change involves the integration of safety features regarding the control of multiple
objects into the backend. In addition to maintaining the individual position, velocity and
orientation data of each of the trackables connected to the ground station, the ground station will
also conduct additional checks to ensure dangerous scenarios such as collisions between quads do
not occur. . This tracker will loop through all objects and provide them each with position
information assuming they are using the VRPN system. This will also bring about changes in the
GUI which will consist of a means of warning the user that dangerous conditions will/have
occur/occurred.

2.1.4 Continuous Integration

The original Continuous Integration (CI) system ran a suite of tests that performed checks on parts
of the quad software, using a set of sockets to simulate the drivers used on the quad. It relied on a
basic testing framework, created by a previous team member, consisting of a single assert function.
To address these limitations, we plan to add an additional part to the testing procedure to test the
controls themselves. This would involve interfacing with a flight simulator and connecting the
controls used on the quadcopter to the simulator, with the output of the simulator connected as
inputs to the control model and the outputs of the control model connected to the inputs of the
simulator to provide throttle levels to the motors of the quad in simulation. Automated tests that
integrate with this simulator will also be made to test the ground station. In addition, we plan to
replace the testing framework currently in use with a more powerful C testing library, Unity [5]. To
do this we will work to convert the existing tests to use Unity.

2.1.5 Quad Software and Tests

To improve debugging, we want to send sensor data and actuator results in real time. We are also
giving the user the option to select which sensor data they want information from. The sensor data

SDMAY19-20 12

task has two parts : program the quad to send data in real time, and validate that the data has been
sent quickly enough. The more sensor data that is sent, the more it will slow down the quad. To
test how much sensor data can be sent at once, our approach is to log the latency and calculate it
from there. As for sending the sensor data, we’ve tried two approaches : using the existing logging
framework, and sending data using that framework, or just sending the sensor data directly right
after data comes in, using the uart driver. Another possible approach is to create a thread that
continuously polls the output from various sensors.

2.2 DESIGN ANALYSIS

2.2.1 Quad Software

In terms of Quad software we have currently not made many modifications to the system from a
functional perspective. We have looked into modifying the way our system boots to allow for
multiple different types of sensors as feedback, but to no success yet. one thing I think we really
need to implement is a better system of testing. When we attempt to test any changes to the
system it can sake several minutes and in turn slow development time significantly. One idea of
making a wall plug to power the board and sensors but not the motors as a testing platform instead
of the batteries. This would enable faster testing iterations and improve development speed
significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice
of future development time increasing. this is due to hardware acceleration being costly (in terms
of time) to modify and test as opposed to a software solution.

2.2.2 Controls

As described in the Proposed Design section, the plan is to implement a nonlinear control in a
finite number of linearized segments. This solution will have more precision than the existing PID
controllers by computing control signals directly from the theoretical dynamics of the quad. This
model will use a very precise representation of the quad obtained from planned work in system
identification. To emphasize the point from above, this approach allows for higher precision - and
thus speed - than a PID implementation at the cost of being more difficult to configure when the
quad changes and having a smaller range of operation if not enough linear segments are included.

2.2.3 Ground Station

We currently have a robust framework and backend with a bare bones GUI implemented for
controlling a single quadcopter. Moving forward we plan on using the backend only modifying
what is needed to implement safety features for multiple quads and fix any bugs we find. However
we will focus heavily on GUI development and making our platform one that is extremely easy to
work with for demos and research. As defined in 1.6.2 we plan on adding real time flight data
transmission, redesigned GUI, and improved multiple object tracking capabilities. Each of these
parts will either make research easier to use, take less time to collect data, better review the data
gathered, and allow for more complicated and impressive demos.

2.2.4 Continuous Integration

Integration of new features into the system is done through a series of tests ran automatically after
every commit in the online Git repository. Tests are written in scripting programming languages
such as Perl or Python. The merge request merge is unlocked upon successful run of the test
scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual

SDMAY19-20 13

quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the
successful completion of the quadcopter flight model description. Once completed, we will be able
to simulate virtual flight and thus test the controls software along with our current simple software
test.

3 Testing and Implementation

3.1 INTERFACE SPECIFICATIONS

The top-level system includes the camera system, the ground station, and the quad. Both the
camera system and quad interface to the ground station. The ground station relays messages
between the camera system, the quad, and the user. It is necessary for the ground station to relay
input to the quad ~100 times per second, and the latency must be less than 10 ms. Onboard the
quad, the software interfaces to the sensors and motors through the FPGA hardware design. This
hardware design uses memory-mapped peripherals to link the processor and external devices.
These interfaces need to be low-latency, with the motor output and sensor data being updated
about 200 times per second (< 5 ms of latency).

3.2 HARDWARE AND SOFTWARE

Testing the system involves hardware, software, and integration testing. The hardware tests run in
simulation automatically by the continuous integration system, though there are additional tests
that must be run manually, on the physical quad system. The simulated tests require Xilinx Vivado,
the FPGA design/simulation environment. The software also has tests that are part of the
continuous integration system. These tests require a C/C++ compiler, QT to compile the ground
station UI, and a machine to run them on. Integration tests consist of running the quad and seeing
if it flies correctly. In theory, if any piece is broken, the quad should not be able to fly. Integration
tests require the camera system, the ground station, a wifi-bridge, and the quad.

3.3 FUNCTIONAL TESTING

3.3.1 HARDWARE

The hardware design includes the wiring and components, as well as the FPGA design. The FPGA
design consists of many IP blocks attached to the fixed portion of the FPGA, some of which are
custom built for our project. The vendor supplied components are assumed to be well tested. The
custom blocks are tested using a combination of simulation tests, and software projects.

The electrical components and their wiring are a potential failure point for the quad, and are not
easily tested automatically. Each component and the requisite wiring to make it function is tested
by a flight, operating these items requires a person to be present. There are unit-functional-tests in
the project that a user can use to test a single sensor or other device without making intentional
use of other devices. To mitigate the risks associated with wiring in a vehicular platform, we have
opted to use locking connectors in our design. These reduce the risk of in-flight disconnection, and
reduce the maintenance required.

The simulation tests for the custom IP cores test the core functions of the module, without the
logic that provides the software interface. These tests can catch and identify behavioral bugs in the

SDMAY19-20 14

module’s logic. The software application tests use hardware designs that have as few blocks as
possible to test the full functionality of the custom IP block. The general format is that the
application asks the user to attach any needed wires, then generates some input for the input
blocks, or triggers the output blocks to generate, then evaluates the result. These tests can catch a
broader range of errors, but are less capable of identifying the source, and cannot be as easily
automated.

3.4 NON-FUNCTIONAL TESTING

Due to the nature of this project, functional and non-functional testing often overlaps in nature
and scope. While a 5ms control loop time seems like a non-functional requirement, this level of
speed for control loops is necessary to keep the quad in the air.

3.5 PROCESS

Figure 3-1: Iterative Testing Process

3.5.1 Quad Hardware and Software

The quad hardware and software are tested both together and separately. Each has unit tests that
test specific portions of the system (communications packet format, PWM output timing) and can
be tested together by testing the flight-capability of the quad. The hardware unit tests are done
with VHDL testbenches under simulation in Xilinx Vivado. These can be run automatically, and
have scripts that can generate a failure if the simulation reports a problem. The quad software has
built in test cases that can be used if the quad software is compiled as a test build. Doing this
removes the dependency on the hardware of the FPGA design and allows the tests to be run on any
machine. In addition to these tests, there are single-application, minimally integrated tests that
allow a user to run a test that includes software and hardware, but only as needed for a specific
subsystem (such as checking that the software can read IMU data).

3.5.2 Controls

To test a control system, there are basically 2 methods: simulate the design, and run it on the real
system. Simulating the design is safer, but requires an accurate model of the quadcopter which is
built on multiple physics-based equations. Running the controller on the real system does not
require a model of the quad, but if the controller does not act as expected or if the actual system
differs greatly from the model the controller is based on then the system may fail, sometimes
catastrophically. We strive to do as much testing of the controller in simulation as we can, using
tools such as Matlab, and take the appropriate safety measures (tether and maintaining a safe
distance) when we do need to fly the quad.

SDMAY19-20 15

3.5.3 Ground Station

Due to the stability of the backend and VRPN setup already present in the ground station code, no
large changes to the overall functionality of the backend are intended to be made. Instead,
pre-existing and pre-tested basic commands are to be used in any and all extended functionality
involving communication with the quad. This allows testing for the Ground Station backend code
to be verified via simple system performance tests with a predetermined stable build on the quad.
Frontend changes to the UI and their effects are readily and easily determined due to the visibility
of the UI and changes to the UI code in the QTCreator framework, and can thus be verified as such.

3.6 RESULTS

3.6.1 Quad Hardware

The quadcopter’s hardware has encountered several failures and minor problems. During our initial
demonstration, we has a power failure to the IMU due to faulty/loose wiring. None of the current
team considered that the wiring might be loose and the debugging process took a long time. In the
end, we ran the demy by unplugging and re-plugging the power cable to the IMU. As we developed
hardware tests, we encountered some minor problems in the PWM capture and generation timings.
These resulted in small errors (ranging from 1 to 18 clock cycles) that would not have been
noticeable in the integrated system, but were nonetheless an error. All discovered errors in the tests
have been resolved. The biggest problem with the hardware testing has been integrating it into the
CI framework. This required ETG to update/reconfigure the machine used for automated testing.

3.6.2 Controls

Our tests of the quad’s PID controller have been successful, though we have not had many practical
flight tests. Our demonstration at the ECpE scholars fair was generally a success, barring a delay
due to electrical failure.

The previous MicroCART team worked to create an operational LQR controller that would be
usable as an alternative controller for the quadcopter. While they were largely successful in the
completion of its design, hardly any actual testing has been completed on the new controller. We
are taking steps to reduce risk to the quadcopter in the event that the LQR controller does not
function by first attempting to test it using a simulator and by observing if its behavior in Matlab
matches the behavior we expect from it when given specific inputs. Ultimately, the usefulness of
this approach is somewhat limited due to uncertainty surrounding the accuracy of the model
quadcopter in the simulator and the equations used to model the quadcopter’s behavior. If there is
enough error in our model, then we may be unable to catch errors in our controller until we are
able to perform tests on the physical quadcopter.

3.6.3 Ground Station

Currently, the Ground Station has issues sending large packets while still maintaining performance
standards. This is due to insufficient levels of bandwidth available to send data during a standard
control loop. This will eventually cause problems as transferring additional flight data during
runtime (thereby satisfying the real time transfer of flight data requirement) will require larger or
more packets to be sent. In order to mitigate this, it will become necessary to run tests on the
quad’s and ground stations UART connection to determine the maximum amount of data that can

SDMAY19-20 16

realistically be transferred while still maintaining performance and runtime standards, and then
utilize this data to send an optimal size/number of packets per control loop.

4 Closing Material

4.1 CONCLUSION

Overall, the purpose of this project is to provide a stable and accessible research platform for
graduate students to test their controls and embedded systems algorithms, as well as be a
demonstration piece to show in departmental demos. In order to create as useful a platform as
possible, the best course of action is to continue increasing the stability and dependability of the
features that already exist on the quad, as well as introduce key new features that are necessary for
researchers and demonstrators to complete their work. Maintaining focus on these key areas will be
essential for creating an effective and useful research platform for many graduate classes to come.

4.3 APPENDICES

Project Repository: https://git.ece.iastate.edu/danc/MicroCART

SDMAY19-20 17

