
 

  



Table of Contents 
1 Introduction 5 

Acknowledgement 5 

1.2  Problem Statement 6 

1.2.1 Problem 6 

1.3 Operational Environment 6 

1.4 Intended Users and Uses 6 

1.5  Assumptions and Limitations 7 

1.5.1 Assumptions 7 

1.5.2 Limitations 7 

1.6 Expected End Product and Deliverables 7 

1.6.1 Quad Hardware and Software 7 

1.6.1.1 Vivado Upgrade Testing 7 

1.6.1.2 Second Quad 7 

1.6.1.3 Quad Hardware Upgrade 8 

1.6.1.4 Quad Software Upgrade 8 

1.6.1.4 Power Regulator PCB Board 8 

1.6.1.4 Sensor Data Sent in Real Time 9 

1.6.2 Ground Station 9 

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by 
May 1, 2019 9 

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by 
May 1, 2019 9 

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by 
May 1, 2019 9 

1.6.3 Controls Systems 9 

1.6.3.1 Model Linearization and LQR Controllers 9 

1.6.3.2 System Parameterization Instructions 10 

1.6.4 Continuous Integration 10 

1.6.4.1 Quad Simulator 10 

SDMAY19-20     1 



1.6.4.2 Upgrade Testing Framework 10 

1.6.4.2 Automated Testing for Controls Output 10 

1.6.5 Documentation 10 

1.6.6 Demos 11 

2. Specifications and Analysis 11 

Proposed Design 11 

2.1.1 Quad Hardware and Software 11 

2.1.2 Controls 11 

2.1.3 Ground Station 12 

2.1.4 Continuous Integration 12 

2.1.5 Quad Software and Tests 12 

Design Analysis 13 

2.2.1 Quad Software 13 

2.2.2 Controls 13 

2.2.3 Ground Station 13 

2.2.4 Continuous Integration 13 

Testing and Implementation 14 

Interface Specifications 14 

Hardware and software 14 

Functional Testing 14 

Hardware 14 

Non-Functional Testing 15 

Process 15 

Quad Hardware and Software 15 

Controls 15 

Ground Station 16 

Results 16 

Quad Hardware 16 

Controls 16 

SDMAY19-20     2 



Ground Station 16 

4 Closing Material 17 

4.1 Conclusion 17 

4.3 Appendices 17 

 

 

 
 

 

 

 

 

 

List of figures/tables/symbols (​This should be the similar to the project plan) 

Figure 1-1: MicroCART quadcopter 5 

Figure 3-1: Iterative Testing Process 15 

  

SDMAY19-20     3 



Definitions 

Term Definition 

CLI Command line interface 

Continuous 
Integration  

automated process of running tests on every commit to the repository 

Demo Short for demonstration; this is one of the deliverables of the project: a 
demonstration of the quad’s capabilities, for example, doing a backflip 
with the quad, finding an object and following it, communicating with a 
second quad to perform flight patterns 

GPS Global Positioning System; space-based radionavigation system using 
satellites to determine position; proposed to find position (x, y) when 
not in the lab using the VRPN system 

Ground station The application that runs on a host computer that communicates with 
the quad via a Wi-Fi connection and sends it coordinates to the quad 

GUI Graphical user interface 

IR Infrared wavelengths of light longer than visible light; used in the VRPN 
system to determine the position of the quad 

LIDAR Light Detection and Ranging; this is a system for determining the 
altitude (z) of the quad using the onboard sensor 

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by 
the relative motion between the and the scene to determine position; 
used by the quad to calculate position (x, y) when not in the lab using 
the VRPN system 

PID Proportional-integral-derivative control system; standard control 
algorithm used on the quad 

Quad Short for quadcopter; this is the hardware platform we use in this 
project 

Setpoint in a control system, the target value for an essential variable 

VRPN Virtual-Reality Peripheral Network; this is the system used to determine 
the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using 
a set of 12 stationary cameras and an IR transmitter on the quad 
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1 Introduction 
Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the 
development of a quadcopter (see Figure 1 below) and tracking system. This project has been in 
development since 1998 and the current system has been passed down since 2006. The project aims 
to create a stable and easy to use platform for researching control theory. The quadcopter flies 
primarily in the Distributed Sensing and Decision Making Laboratory within a twelve camera 
infrared tracking system. 

 

Figure 1-1: MicroCART quadcopter 

1.1 ACKNOWLEDGEMENT 

MicroCART is a project that is assisted by graduate students working in controls under Dr. Phillip 
Jones. As this is an ongoing project, previous team members will also be providing help in 
understanding the current system. As such, we would like to acknowledge the assistance that has 
been and will be provided by: 

● Matthew Cauwels 
● Robert Buckley 
● Matt Rich 
● Dr. Phillip Jones 
● Dane Larson 
● Matthew Kelly 
● Austin Rohlfing 
● Eric Middelton 
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1.2 PROBLEM STATEMENT 

We will improve upon an existing platform that is used for research in controls and embedded 
systems and for departmental demos. The platform will be improved by adding increased, reusable 
testing of all systems, adding documentation to increase the speed for new users to get started, and 
by adding new system features. 

1.2.1 Problem 

The MicroCART platform designed in previous years had many flaws that hindered its use for 
research and demo purposes. The previous platform failed to familiarize the user(s) of the system in 
a time horizon that would make it viable for research. This is because the system did not have 
ample documentation available for the users of the system to learn about the platform and its uses. 
From the viewpoint of a user running demos the area within the VRPN system the platform as it 
stood is most stable when confined to flying within the VRPN system as the optical flow navigation 
can not hold position during flight. This means that the areas available to the quadcopter for 
demos can only utilize the small amount of space in the lab for a demo. Lastly, the quadcopter is 
controlled using a PID controller that requires logical guessing and checking to tune, we now have 
a new linear controller that can be computed faster and be tuned around multiple points on the 
non linear model. 

1.3 OPERATIONAL ENVIRONMENT 

In order to fly using the VRPN software for position and orientation data, the quad must be inside 
of a small area (less than 10 m​2​) inside of Coover 3050. This lab is designed to cause very few 
environmental impacts on the quadcopter. Through the use of ventilation, window shades, and 
Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with 
little to no accumulated dust to affect air quality.  

Additionally, the project relies on two Linux computers. One is used to control the ground station 
software and the other contains build tools for the FPGA on the quadcopter itself. This provides a 
platform for development that is consistent across team members and easier to demo as there are 
not issues with building or ensuring correctness of the various communication aspects used for the 
project. 

1.4 INTENDED USERS AND USES 

The primary set of end users is composed of future MicroCART members and controls graduate 
students at Iowa State. We also have demonstrations for prospective students, someone from the 
two categories (the user) will be running the demo for them (the audience). This means that the 
users can be assumed to have competence in using multiple forms of programs (for example, either 
GUI or CLI) and in reading general technical documentation.  

The other goal listed above regards the modular implementation of new control algorithms as a 
research opportunity for graduate students. These users have three primary needs from our 
product. The first is a robust and reliable system to decrease variation in test results. This includes 
having sturdy quad hardware, low communication latency, and a bug-free user interface. The 
second need is to have modular software with complete documentation to allow for them to alter 
the implementation themselves, without the need for significant system rework or intervention of 
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the MicroCART design team. Finally, these students will need the data from the system 
characterization in order to form their models. This includes information about mass, moments of 
inertia, motor resistances, rotor areas, and many other properties that determine the true behavior 
of the quadcopter. There is also a need to make sure that any new features are documented clearly 
so that the next group of students that add features will be able to ramp up quickly. 

 

1.5 ASSUMPTIONS AND LIMITATIONS 

1.5.1 Assumptions 

● Our VRPN camera system as it exists provides sufficiently accurate position data 
● Our VRPN camera system as it exists provides sufficiently frequent updates 
● The quadcopter will be used within the camera system 

1.5.2 Limitations 

● The quadcopter must use a wireless link to the ground station 
● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS) 
● Latency and range of the wireless link between the quadcopter and the ground station 
● The quadcopter must be physically tethered to the lab floor 

 

 

1.6 EXPECTED END PRODUCT AND DELIVERABLES 
The quadcopter system consists of three major subsections: the quadcopter hardware/software, the 
ground station, and the control systems. Each of the subsections is essential to meet the desired 
objectives and fulfill requirements. Documentation and demos are also a major deliverable for our 
project and will be discussed. 

1.6.1 Quad Hardware and Software 

1.6.1.1 Vivado Upgrade Testing 
The entire quad software platform relies on the Xilinx toolchain. The software we were using to 
develop the Quad software is the Xilinx toolchain. Specifically XPS, which is known to be a very 
non-user friendly and dated piece of software. One of the major goals of this project was to 
transition to the new and improved Vivado to program the FPGA hardware.  In addition, we added 
unit tests for the hardware modules in simulation as part of our continuous integration pipeline. 

1.6.1.2 Second Quad 
Our client advisor requested that we develop a second quad for available flight.  The difficulties in 
building a second quad revolve around the lack of documentation of parts used on the quad, along 
with the availability of the previous generation of parts.  The new quad needed to be able to run the 
same software on a different set of hardware. 

SDMAY19-20     7 



 

Figure 1-1: Parts Order for 2nd Quad 

1.6.1.3 Quad Hardware Upgrade 

The client has requested we upgrade the quads to the latest Zybo board that includes a 
connection for a pi camera. The current quads have many long wires and loose 
connections that are potential points of failure. Our team will create a custom pcb board 
to replace those connections, as well as install the newer zybo boards. 

1.6.1.4 Quad Software Upgrade 

Currently the quad can only fly reliably within the VRPN Camera system. By integrating 
the GPS and improving controls, a quad that will reliably fly outside will be aimed for. The 
improved communication and multi-client capability developed last year opens up the 
possibility of networking and quad coordination. To take advantage of the newer zybo 
boards and cameras the client requested, a version of Linux with OpenCV, to be run on 
the second processor on the board, will be explored. Software surrounding these new 
functionalities will be developed.  

1.6.1.4 Power Regulator PCB Board 

The PCB will monitor battery usage and make sure that the user is alerted when battery 
power is low, and that the quad lands whenever battery power is too low. It will also make 
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sure the battery usage is efficient as possible, and no more power than necessary is drawn 
when the quad is idle. 

1.6.1.4 Sensor Data Sent in Real Time 

Because the quad now uses Wifi instead of Bluetooth, it is possible to explore sending 
sensor data in real time rather than logging sensor data and sending it after the quad 
lands. The user should explain what type of data they want even during mid-flight, and 
the quad should be able to send that data back to the ground station immediately. 

1.6.2 Ground Station 

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by May 1, 2019 

The communication standard currently setup between the Ground Station and the quad supports 
the transmission of flight data and performance information after a flight has completed. Due to 
the amount of information being transferred, this process usually takes a considerable amount of 
time to complete. We would like to improve the communication occurring between the quad and 
the Ground Station to support the transmission of flight data in real time. This will improve the 
quad’s status as a research platform by allowing for easy and timely analysis of flight and controls 
data. 

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by May 1, 2019 

Currently, the GUI does not support displaying flight data to the user in real time as it arrives from 
the quad. The GUI will be updated to include a display for flight data that the user can see, as well 
as interact with to choose the types of data they wish to be seeing and recording. This will allow 
users to have a high level of control over the type and amount of data they are seeing during flight 
time. 

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by May 1, 2019 

Currently the ground station supports having multiple quads connected at the same time. In order 
to maintain a safe environment, both for observers and for the quads, the ground station will be 
improved to include position and orientation analysis for all connected quads in order to ensure 
collisions between objects connected to the ground station do not occur. This allows for a higher 
level of safety when conducting controls experiments involving multiple quads, as well as improve 
the expected lifetime of components and quads.  

 

1.6.3 Controls Systems 

1.6.3.1 Model Linearization and LQR Controllers 
The primary deliverables of this year’s team were a modular linearization of the system model and a 
pair of LQR controllers. The linearization is a script that uses symbolic MATLAB derivation of the 
nonlinear model provided by Matt Rich in [1]. This allows a future user to change the nonlinear 
model and immediately recompute the system linearization. Similarly, the linearization is also 
dynamic on the measured system parameters, so no further work needs to be done to account for 
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potential future changes of physical properties (e.g. using bigger rotors or a frame with a greater 
mass). 

1.6.3.2 System Parameterization Instructions 
Because there are now two quadrotors, it is more important than ever to be able to measure and 
track the physical properties of of each quadcopter. As such, the controls team aggregated 
parameter measurement procedures from both Rich’s [1] and McInerney’s [4] research, as well as 
from un-versioned documentation from the previous year’s team. These were formed into a series 
of four parameter identification instruction documents, written in Markdown and stored on git, 
that contained straightforward instruction, consistent variable usage, and (where necessary) 
example MATLAB scripts. Additionally, a Markdown document was created to track all relevant 
parameter values and instruction sets. 

1.6.4 Continuous Integration 

1.6.4.1 Quad Simulator 

The quad simulator models a virtual flight dynamics environment for various flight tests. The 
current established model in the simulator does not model rotor dynamics; however, it still offers a 
reliable platform for performing sanity checks of the changes in controls and quad software. The 
current simulator uses a slightly modified version of the actual quadcopter controls. The simulator 
also offers input and output through sockets which enables control to be running outside of the 
simulator. Our team will focus on improving the simulator model and integrating the simulator 
with the automated environment of GitLab. 

1.6.4.2 Upgrade Testing Framework 
Continuous Integration is the system that tests changes to code using the virtual quadcopter 
software. To make the tests more standardized and provide more flexibility in writing the tests, the 
tests were ported from a custom barebones testing framework to a standard testing framework, 
Unity [5]. This provides a fully developed set of testing functions that can be used by future teams. 
We plan to also increase test coverage, and write tests for new features. 

1.6.4.2 Automated Testing for Controls Output 
We plan on creating a test that would gather information about the controls output in real time, 
then get the actuator data from the simulator and make sure that the two points match. 

1.6.5 Documentation 
The year before, many areas of the code, especially those relating to ground station and quad 
software, were lacking documentation. The ground station contains four main components that are 
separated well but adding functionality was not explained nor is it mentioned that this is custom 
communication between the ground station and quad. The quad software is designed in a way that 
makes it so external directories must be used in build tools and there is also no explanation of the 
hardware running on the quad. Last year’s team made it their goal to have documentation for all 
existing demos, documentation consistent in all code, and documentation for the research done 
during their time on the team. To follow up on that goal, our team will continue adding 
documentation. This year, the areas of controls model and simulation, ground station, the CI 
Testing Framework, along with pure hardware plans need improvement and organization. 
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1.6.6 Demos 
As one purpose of this project is to showcase the talents within this department, new demos 
needed to be developed to showcase yearly changes. These demos are performed to controls classes 
as well as to undergraduate students. We plan to implement the following major demos: 

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance 
away from it. 

2. Have multiple quads perform synchronous movements 
3. Have multiple types of quads running at the same time flying together. 

2. Specifications and Analysis 

2.1 PROPOSED DESIGN 

2.1.1 Quad Hardware and Software 

In order to effectively upgrade our Xilinx Toolchain software to the latest version of Vivado we 
determined it was best to create a new project in Vivado, re-develop the same hardware, and export 
that to the old hardware workspace using the old software and project to reduce the amount of 
variance that we introduce into the system. Once this is verified, we can move the software over to 
the new set of tools as well. 

Upgrading to the newer Zybo boards may need some hardware port changes. To increase reliability, 
more robust physical ports will need to be soldered on and the wiring replaced with a custom 
designed PCB board. The current hardware power specifications and wiring need to be mapped 
out/ documented before designing can begin.  

One way to create this PCB is to create a Coulomb counter, or to use predictive methods to 
determine the approximate battery level, or a mix of the two. In other words, predict when the 
battery is likely to be low, then use a coulomb counter after that. 

2.1.2 Controls 

The controls for the quad is currently implemented using nested proportional-integral-derivative 
(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x, y, 
z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very 
configurable approach to quadcopter controls, as modifications to the quad can be accounted for 
by simply adjusting the various PID constants. 

The problem with PID controllers is that they contain almost no information about the system 
physics, and once tuned to reasonable values control cannot be reliably improved except through 
modifying the coefficients by hand to meet qualitative judgements. The primary change we wanted 
was to create a controller based on a physical model of quadrotor actuation, which can serve as 
non-trivial starting point for future controls research on this platform. Specifically, the plan was to 
implement an LQR controller capable of flying the quad to prove the correctness of our model and 
its computed linearization. 
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2.1.3 Ground Station 

The overall architecture of the various components for the ground station will stay consistent but 
the network architecture, as well as backend functionality, will be improved. The ground station is 
currently well designed allowing for a backend server, a frontend for clients to use for 
communication with the backend, and various clients such as the GUI or CLI (more details on each 
interface can be found later in the report). The benefits of the system as it stands is that the 
communication and server are kept with the backend so that clients do not need added complexity 
to deal with the different objects that are connected. The frontend provides a simple interface that 
clients can pass data to and get a response as needed. This again hides the backend implementation 
from the clients and this interface is simplified and provides all functionality that the quad and 
backend have to offer.  

The current communication standard for the MicroCART system allows for formatted packets to be 
sent between the ground station and the quad both during flight time for regular flight instructions 
as well as after flights for transmitting flight data logs. The ground station (and therefore, the quad) 
will be updated so that it will request and receive flight data during operation over the UART 
connection currently used to send instruction data. This information will then be formatted and 
displayed to the user on an updated GUI. The user will also be able to choose the type(s) of 
information they want the ground station to display. This change allows for a higher ease of use of 
the quad as a research platform as the types of data displayed will be determined by the user.  

The next major change involves the integration of safety features regarding the control of multiple 
objects into the backend. In addition to maintaining the individual position, velocity and 
orientation data of each of the trackables connected to the ground station, the ground station will 
also conduct additional checks to ensure dangerous scenarios such as collisions between quads do 
not occur. . This tracker will loop through all objects and provide them each with position 
information assuming they are using the VRPN system. This will also bring about changes in the 
GUI which will consist of a means of warning the user that dangerous conditions will/have 
occur/occurred. 

2.1.4 Continuous Integration 

The original Continuous Integration (CI) system ran a suite of tests that performed checks on parts 
of the quad software, using a set of sockets to simulate the drivers used on the quad. It relied on a 
basic testing framework, created by a previous team member, consisting of a single assert function. 
To address these limitations, we plan to add an additional part to the testing procedure to test the 
controls themselves. This would involve interfacing with a flight simulator and connecting the 
controls used on the quadcopter to the simulator, with the output of the simulator connected as 
inputs to the control model and the outputs of the control model connected to the inputs of the 
simulator to provide throttle levels to the motors of the quad in simulation. Automated tests that 
integrate with this simulator will also be made to test the ground station. In addition, we plan to 
replace the testing framework currently in use with a more powerful C testing library, Unity [5]. To 
do this we will work to convert the existing tests to use Unity.  

2.1.5 Quad Software and Tests 

To improve debugging, we want to send sensor data and actuator results in real time. We are also 
giving the user the option to select which sensor data they want information from. The sensor data 
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task has two parts : program the quad to send data in real time, and validate that the data has been 
sent quickly enough. The more sensor data that is sent, the more it will slow down the quad. To 
test how much sensor data can be sent at once, our approach is to log the latency and calculate it 
from there. As for sending the sensor data, we’ve tried two approaches : using the existing logging 
framework, and sending data using that framework, or just sending the sensor data directly right 
after data comes in, using the uart driver. Another possible approach is to create a thread that 
continuously polls the output from various sensors. 

2.2 DESIGN ANALYSIS 

2.2.1 Quad Software 

In terms of Quad software we have currently not made many modifications to the system from a 
functional perspective. We have looked into modifying the way our system boots to allow for 
multiple different types of sensors as feedback, but to no success yet. one thing I think we really 
need to implement is a better system of testing. When we attempt to test any changes to the 
system it can sake several minutes and in turn slow development time significantly. One idea of 
making a wall plug to power the board and sensors but not the motors as a testing platform instead 
of the batteries. This would enable faster testing iterations and improve development speed 
significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice 
of future development time increasing. this is due to hardware acceleration being costly (in terms 
of time) to modify and test as opposed to a software solution. 

2.2.2 Controls 

As described in the Proposed Design section, the plan is to implement a nonlinear control in a 
finite number of linearized segments. This solution will have more precision than the existing PID 
controllers by computing control signals directly from the theoretical dynamics of the quad. This 
model will use a very precise representation of the quad obtained from planned work in system 
identification. To emphasize the point from above, this approach allows for higher precision - and 
thus speed - than a PID implementation at the cost of being more difficult to configure when the 
quad changes and having a smaller range of operation if not enough linear segments are included. 

2.2.3 Ground Station 

We currently have a robust framework and backend with a bare bones GUI implemented for 
controlling a single quadcopter. Moving forward we plan on using the backend only modifying 
what is needed to implement safety features for multiple quads and fix any bugs we find. However 
we will focus heavily on GUI development and making our platform one that is extremely easy to 
work with for demos and research. As defined in 1.6.2 we plan on adding real time flight data 
transmission, redesigned GUI, and improved multiple object tracking capabilities. Each of these 
parts will either make research easier to use, take less time to collect data, better review the data 
gathered, and allow for more complicated and impressive demos. 

2.2.4 Continuous Integration 

Integration of new features into the system is done through a series of tests ran automatically after 
every commit in the online Git repository. Tests are written in scripting programming languages 
such as Perl or Python. The merge request merge is unlocked upon successful run of the test 
scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual 
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quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the 
successful completion of the quadcopter flight model description. Once completed, we will be able 
to simulate virtual flight and thus test the controls software along with our current simple software 
test. 

3 Testing and Implementation 

3.1 INTERFACE SPECIFICATIONS 

The top-level system includes the camera system, the ground station, and the quad. Both the 
camera system and quad interface to the ground station. The ground station relays messages 
between the camera system, the quad, and the user. It is necessary for the ground station to relay 
input to the quad ~100 times per second, and the latency must be less than 10 ms. Onboard the 
quad, the software interfaces to the sensors and motors through the FPGA hardware design. This 
hardware design uses memory-mapped peripherals to link the processor and external devices. 
These interfaces need to be low-latency, with the motor output and sensor data being updated 
about 200 times per second (< 5 ms of latency). 

3.2 HARDWARE AND SOFTWARE 

Testing the system involves hardware, software, and integration testing. The hardware tests run in 
simulation automatically by the continuous integration system, though there are additional tests 
that must be run manually, on the physical quad system. The simulated tests require Xilinx Vivado, 
the FPGA design/simulation environment. The software also has tests that are part of the 
continuous integration system. These tests require a C/C++ compiler, QT to compile the ground 
station UI, and a machine to run them on. Integration tests consist of running the quad and seeing 
if it flies correctly. In theory, if any piece is broken, the quad should not be able to fly. Integration 
tests require the camera system, the ground station, a wifi-bridge, and the quad. 

3.3 FUNCTIONAL TESTING 

3.3.1 HARDWARE 

The hardware design includes the wiring and components, as well as the FPGA design. The FPGA 
design consists of many IP blocks attached to the fixed portion of the FPGA, some of which are 
custom built for our project. The vendor supplied components are assumed to be well tested. The 
custom blocks are tested using a combination of simulation tests, and software projects. 

The electrical components and their wiring are a potential failure point for the quad, and are not 
easily tested automatically. Each component and the requisite wiring to make it function is tested 
by a flight, operating these items requires a person to be present. There are unit-functional-tests in 
the project that a user can use to test a single sensor or other device without making intentional 
use of other devices. To mitigate the risks associated with wiring in a vehicular platform, we have 
opted to use locking connectors in our design. These reduce the risk of in-flight disconnection, and 
reduce the maintenance required. 

The simulation tests for the custom IP cores test the core functions of the module, without the 
logic that provides the software interface. These tests can catch and identify behavioral bugs in the 
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module’s logic. The software application tests use hardware designs that have as few blocks as 
possible to test the full functionality of the custom IP block. The general format is that the 
application asks the user to attach any needed wires, then generates some input for the input 
blocks, or triggers the output blocks to generate, then evaluates the result. These tests can catch a 
broader range of errors, but are less capable of identifying the source, and cannot be as easily 
automated. 

3.4 NON-FUNCTIONAL TESTING 

Due to the nature of this project, functional and non-functional testing often overlaps in nature 
and scope. While a 5ms control loop time seems like a non-functional requirement, this level of 
speed for control loops is necessary to keep the quad in the air. 

3.5 PROCESS 

 

Figure 3-1: Iterative Testing Process 

3.5.1 Quad Hardware and Software 

The quad hardware and software are tested both together and separately. Each has unit tests that 
test specific portions of the system (communications packet format, PWM output timing) and can 
be tested together by testing the flight-capability of the quad. The hardware unit tests are done 
with VHDL testbenches under simulation in Xilinx Vivado. These can be run automatically, and 
have scripts that can generate a failure if the simulation reports a problem. The quad software has 
built in test cases that can be used if the quad software is compiled as a test build. Doing this 
removes the dependency on the hardware of the FPGA design and allows the tests to be run on any 
machine. In addition to these tests, there are single-application, minimally integrated tests that 
allow a user to run a test that includes software and hardware, but only as needed for a specific 
subsystem (such as checking that the software can read IMU data). 

3.5.2 Controls 

To test a control system, there are basically 2 methods: simulate the design, and run it on the real 
system. Simulating the design is safer, but requires an accurate model of the quadcopter which is 
built on multiple physics-based equations. Running the controller on the real system does not 
require a model of the quad, but if the controller does not act as expected or if the actual system 
differs greatly from the model the controller is based on then the system may fail, sometimes 
catastrophically. We strive to do as much testing of the controller in simulation as we can, using 
tools such as Matlab, and take the appropriate safety measures (tether and maintaining a safe 
distance) when we do need to fly the quad. 
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3.5.3 Ground Station 

Due to the stability of the backend and VRPN setup already present in the ground station code, no 
large changes to the overall functionality of the backend are intended to be made. Instead, 
pre-existing and pre-tested basic commands are to be used in any and all extended functionality 
involving communication with the quad. This allows testing for the Ground Station backend code 
to be verified via simple system performance tests with a predetermined stable build on the quad. 
Frontend changes to the UI and their effects are readily and easily determined due to the visibility 
of the UI and changes to the UI code in the QTCreator framework, and can thus be verified as such. 

3.6 RESULTS 

3.6.1 Quad Hardware 

The quadcopter’s hardware has encountered several failures and minor problems. During our initial 
demonstration, we has a power failure to the IMU due to faulty/loose wiring. None of the current 
team considered that the wiring might be loose and the debugging process took a long time. In the 
end, we ran the demy by unplugging and re-plugging the power cable to the IMU. As we developed 
hardware tests, we encountered some minor problems in the PWM capture and generation timings. 
These resulted in small errors (ranging from 1 to 18 clock cycles) that would not have been 
noticeable in the integrated system, but were nonetheless an error. All discovered errors in the tests 
have been resolved. The biggest problem with the hardware testing has been integrating it into the 
CI framework. This required ETG to update/reconfigure the machine used for automated testing. 

3.6.2 Controls 

Our tests of the quad’s PID controller have been successful, though we have not had many practical 
flight tests. Our demonstration at the ECpE scholars fair was generally a success, barring a delay 
due to electrical failure.  

The previous MicroCART team worked to create an operational LQR controller that would be 
usable as an alternative controller for the quadcopter. While they were largely successful in the 
completion of its design, hardly any actual testing has been completed on the new controller. We 
are taking steps to reduce risk to the quadcopter in the event that the LQR controller does not 
function by first attempting to test it using a simulator and by observing if its behavior in Matlab 
matches the behavior we expect from it when given specific inputs. Ultimately, the usefulness of 
this approach is somewhat limited due to uncertainty surrounding the accuracy of the model 
quadcopter in the simulator and the equations used to model the quadcopter’s behavior. If there is 
enough error in our model, then we may be unable to catch errors in our controller until we are 
able to perform tests on the physical quadcopter.  

3.6.3 Ground Station 

Currently, the Ground Station has issues sending large packets while still maintaining performance 
standards. This is due to insufficient levels of bandwidth available to send data during a standard 
control loop. This will eventually cause problems as transferring additional flight data during 
runtime (thereby satisfying the real time transfer of flight data requirement) will require larger or 
more packets to be sent. In order to mitigate this, it will become necessary to run tests on the 
quad’s and ground stations UART connection to determine the maximum amount of data that can 
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realistically be transferred while still maintaining performance and runtime standards, and then 
utilize this data to send an optimal size/number of packets per control loop.  

4 Closing Material 

4.1 CONCLUSION 

Overall, the purpose of this project is to provide a stable and accessible research platform for 
graduate students to test their controls and embedded systems algorithms, as well as be a 
demonstration piece to show in departmental demos. In order to create as useful a platform as 
possible, the best course of action is to continue increasing the stability and dependability of the 
features that already exist on the quad, as well as introduce key new features that are necessary for 
researchers and demonstrators to complete their work. Maintaining focus on these key areas will be 
essential for creating an effective and useful research platform for many graduate classes to come. 

4.3 APPENDICES 

Project Repository: https://git.ece.iastate.edu/danc/MicroCART 
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